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Abstract 
Musicians and recording engineers are often interested in 
manipulating and processing individual instrumental parts 
within an existing recording to create a remix of the 
recording. When individual source tracks for a stereo 
mixture are unavailable, remixing is typically difficult or 
impossible, since one cannot isolate the individual parts. 
We describe a method of informed source separation that 
uses knowledge of the written score and spatial 
information from an anechoic, stereo mixture to isolate 
individual sound sources, allowing remixing of stereo 
mixtures without access to the original source tracks. This 
method is tested on a corpus of string quartet 
performances, artificially created using Bach four-part 
chorale harmonizations and sample violin, viola and cello 
recordings. System performance is compared in cases 
where the algorithm has knowledge of the score and those 
in which it operates blindly.  The results show that source 
separation performance is markedly improved when the 
algorithm has access to a well-aligned score. 
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1. Introduction 
Musical remixing can be broadly defined as the process of 
manipulating and processing individual instrument parts 
within an existing recording.  This could mean simply 
raising the level of a single instrument in a poorly 
balanced mixture, or completely reworking a piece of 
music through editing and applying effects to individual 
instruments.  When individual source tracks for a stereo 
mixture are unavailable, remixing is typically difficult or 
impossible. 

In order to remix existing recordings, one must perform 
source separation—separation of the audio mixture into 
its component sound sources.  While perfect 
reconstruction of individual sources from a musical 
mixture is not currently possible in the general case, even 

imperfect isolation is useful for a number of purposes, 
including improved instrument identification and analysis 
within polyphonic recordings, structured audio coding and 
both the creative and restorative remixing applications 
described above. 

In this paper we describe a method that performs 
source separation using information from the written score 
and spatial cues present in a stereo recording. The 
combination of these lets our method isolate individual 
musical parts in a corpus of four-part Bach chorale 
recordings so that audio effects, equalization and volumes 
can be altered on an instrument-by-instrument basis.  

The remaining sections of this paper describe current 
research in source separation, our existing source 
separation method, our score alignment method, how we 
combine score information and spatial information to 
improve source separation, and experimental results. We 
also provide links to example remixes created using our 
approach at http://bryanpardo.com/papers/ismir2006. 

2. Current Work in Source Separation 
The difficulty of the source separation problem depends on 
the number of sources (instruments) in the recording and 
the number of sensors (microphones) used to make the 
recording. When the number of available audio channels 
(mixtures) equals or exceeds the number of individual 
sources (a quadraphonic recording of a trio, for example), 
one may use Independent component analysis (ICA) [7]. 

The source separation problem is considered 
degenerate, or under determined, when the number of 
sources exceeds the number of mixtures. Standard ICA 
algorithms are not effective in the degenerate case.  Since 
millions of audio recordings exist in a stereo format (two-
mixtures), but typically consist of more than two source 
signals, it should be clear why solving the degenerate 
source separation problem is of considerable interest to 
researchers. 

Recent approaches to degenerate source separation of 
speech mixtures have exploited the sparsity of speech 
signals in the time-frequency domain. Speech is 
considered sparse because the vast majority of time-
frequency frames in a speech signal have magnitude near 
zero. This is used to justify the assumption that at most one 
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source signal (talker) has significant energy in any given 
time-frequency frame (the signals are time-frequency 
disjoint). Given this assumption, a time-frequency masking 
approach can be used that exploits spatial cues from an 
anechoic, stereo recording to separate sources from a 
mixture [14]. 

Tonal music makes extensive use of multiple 
simultaneous instruments, playing consonant intervals 
(such as unisons, octaves and perfect fifths). When two 
harmonic sources form a consonant interval, their 
fundamental frequencies are related by a ratio that results 
in significant overlap between the harmonics (regions of 
high-energy at integer multiples of the fundamental 
frequency) of one source and those of another.  Non-
harmonic instruments, such as percussion instruments, 
further complicate the problem due to their wide-band 
(noisy) spectral characteristics. Thus, instrument signals 
frequently overlap in both time and frequency, rendering 
approaches that assume time-frequency disjoint sources 
ineffective. 

To deal more effectively with overlapping source 
signals, researchers have introduced assumptions about the 
structure of the sound sources. In the single-mixture 
(monophonic) domain, Virtanen and Klapuri [9, 10] 
assume source signals are harmonic, allowing multi-pitch 
estimation of the polyphonic mixture to determine 
frequency regions in which source signals overlap.  By 
assuming that the signals have a smoothly decaying 
overtone series as a function of frequency, source 
amplitudes in the overlapping frequency regions can be 
estimated. 

Every and Szymanski [1] use a single mixture and 
prior knowledge of instrument pitches to determine 
regions of source signal overlap.  They linearly interpolate 
between known harmonics in cases where multiple sources 
overlap and achieve separation through spectral-filtering 
of the mixture. 

If the number of audio channels equals or exceeds the 
number of sound sources, Viste and Evangelista [11] show 
they can perform iterative source separation by minimizing 
the variance of the temporal envelopes of each source’s 
individual harmonics. While this method does very well in 
situations where two sources overlap and can potentially 
deal with reverberant recordings, it cannot be applied in 
the degenerate case. 

Vincent [8] approaches demixing stereo recordings 
with two or more instruments by incorporating grouping 
rules from computational auditory scene analysis [6], 
spatial cues and time-frequency source signal priors to cast 
the demixing problem into a Bayesian estimation 
framework. This is done to let the system handle 
reverberant recordings, but requires significant prior 
knowledge of each source signal in the mixture and is not 
suited to the remixing applications described in the 
introduction. 

While remixing is possible when source separation 
can be achieved, researchers have also approached 
remixing without attempting to fully isolate each sound 
source.  Methods for isolating percussion instruments from 
the rest of a stereo recording for remixing purposes are 
proposed in [2, 15].   While the overarching goal of this 
work is related to our own, our effort has been focused on 
isolating and remixing harmonic instruments in music 
recordings, requiring distinctly different processing 
techniques.   

We previously introduced the ASE method to perform 
separation of stereo, anechoic mixtures of any number of 
harmonic, monophonic sources [13].  This approach 
requires no prior information about the sources, but can 
deal effectively with mixtures that contain significant 
source overlap. ASE can accurately resolve situations 
where two sources overlap, and uses this information to 
resolve regions of recordings where three or more sources 
are simultaneously active. We describe the details of this 
method in the next section. 

3. ASE Source Separation 
The Active Source Estimation (ASE) source separation 
approach assumes an anechoic, stereo (two-channel) 
mixture of harmonic sound sources.  The two mixture 
channels are modeled as follows, 
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where X1(τ,ω) and X2(τ,ω) represent the left and right 
mixtures in the time-frequency domain, with time frame τ 
and frequency bin ω.  Here, Sn(τ,ω) is the nth source 
signal, an is the cross-channel amplitude scaling and δn is 
the cross-channel time-shift associated with source n.  We 
call an and δn the mixing parameters of source n.  

ASE takes a three-step approach to source separation.  
In the first stage, common amplitude and phase differences 
between the two mixtures are assumed to result from the 
differing spatial locations of the individual sources.  The 
most common cross-channel scaling and time-shift factors 
are thus associated with the individual sources as the 
mixing parameters an and δn, and used to identify the time-
frequency frames of the mixture that result from only one 
source [5, 13, 14].  

 The energy from these single-source frames is 
distributed to create initial source estimates while time-
frequency frames that do not match the mixing parameters 
of any of the sources are left in the mixtures for later 
processing.  

In the second step, ASE estimates the number of 
sources that are active in each remaining time-frequency 
frame of the mixtures.  It does this by pitch-tracking the 
partial source estimates from the first step. These 
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fundamental frequency estimates, combined with simple 
harmonic models (estimated from the first stage), let the 
system identify which sources are likely to contribute 
energy to the remaining time-frequency frames in the 
stereo mixture. It is during this stage that the pitch 
information from the score can be utilized.  We discuss the 
implementation of score knowledge into this stage of the 
algorithm in section 4. 

Given our mixture models, the problem when two 
sources are active in a given time-frequency frame is even 
determined, allowing us to solve for the appropriate source 
energies in these frames.  This requires solving the system 
of equations provided by (1) and (2) under the assumption 
that only two sources are active.  If we denote the active 
sources in a particular time-frequency frame, (τ,ω), by 
Sg(τ,ω) and Sk(τ,ω), the following equations result, 
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By determining the appropriate source energy in each 
of these frames, more complete source estimates are 
created, leaving only those time-frequency frames that 
contain energy from three or more sources.  

In mixture frames that have energy from three or more 
sources, the problem is under determined and the relative 
energy contribution of each source cannot be solved for 
directly.  In this case, a third step is taken.  The system 
models the amplitude variation of the harmonics in each 
source estimate. These models are used in conjunction 
with the mixture energy to predict the relative strength of 
the sources in the remaining time-frequency frames. 

This approach lets ASE separate mixtures containing 
time-frequency frames in which multiple harmonic sources 
are active without prior knowledge of source 
characteristics. This method is, however, susceptible to 
errors in pitch tracking. Inaccurate estimates of 
fundamental frequency will result in the system making 
mistakes about which sources contributed energy to 
individual time-frequency frames, causing source 
separation to fail.  In order to improve the reliability of the 
fundamental frequency estimates, it is helpful to use 
information from the musical score, when available. 

4. Score Alignment 
A key ingredient in this approach to source separation is 
the labeling of audio with symbolic pitches. Labeling 
could be done manually, but it is much easier to start with 
a symbolic, machine-readable score, e.g. MIDI. In 
practice, MIDI files can often be found on the Web. While 
a MIDI file encodes basic rhythmic timing, it lacks any 
information about expressive timing and tempo in the 
audio recording. Alignment can recover this information. 

Polyphonic alignment is performed by converting the 
MIDI file and the audio file into a chromagram 
representation [12]. A chromagram is a sequence of 
chroma vectors, 12-element vectors representing the total 
spectral energy corresponding to each of the 12 pitch 
classes (C, C#, D, …, B). The chroma vector is chosen 
because it captures harmonic and melodic information, 
which is shared by audio and MIDI, and it tends to be 
insensitive to amplitude and timbral differences, which 
often do not to match very well between audio and MIDI 
[4]. 

Audio data is divided into 125 ms frames, each of 
which is converted to a chroma vector. For MIDI data, 
chroma vectors are estimated by summing all the matching 
pitch classes sounding during that frame, weighted by the 
key velocity and duration (0.125, or less if the note begins 
or ends during the frame). 

Audio and MIDI chroma vectors are normalized to have 
a mean of 0 and a standard deviation of 1. The next step 
uses dynamic time warping to find the best time alignment, 
using Euclidean distance between chroma vectors. 

Finally, the rough alignment, which is a path quantized 
to points along a 125 ms grid, is smoothed at each point by 
finding the best fit to the nearest 7 points, using linear 
regression. The resulting points define a sampled function 
that can be linearly interpolated to map between MIDI file 
time and audio file time.  

 
Figure 1: Illustration of the combined Score Alignment and 
ASE Source Separation algorithm. Score alignment is 
carried out prior to ASE separation.  Score knowledge is 
incorporated during stage 2 of ASE. 

5. The Combined System 
To incorporate knowledge of the score into the source 
separation algorithm, we must accomplish three primary 
tasks.  First, we must correctly associate individual voices 
(instrument parts) contained in the score with the mixing 
parameters of each source. Second, the pitches in a score 
give only a rough estimate of the actual fundamental 
frequencies present in the mixture. The system must refine 
the pitch estimates provided by the score in order to 
achieve accurate separation. Third, further timing 
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alignment between performance and score must be 
performed within the combined system, since the score-
alignment can be expected to make note onset timing 
errors on the order of 60 ms. 

To account for these issues we incorporate the 
information in the score after the first stage of the ASE 
algorithm.  This allows us to use fundamental frequency 
and amplitude envelope characteristics of the initial signals 
to solve all three problems.  The next two sections will 
describe the techniques employed in more detail. An 
illustration of the overall system is provided in Figure 1. 

5.1 Associating Scored Voices with Initial Source 
Estimates 
The first stage of the ASE algorithm distributes time-
frequency frames of the mixture that contain energy from a 
single source.  For the score to be of use in the second and 
third stages of energy distribution, we must determine 
which voice in the score is associated with a particular 
source estimate.  Since ASE is already estimating the 
fundamental frequency of each source, we take a simple 
approach to establishing this relationship.  We compare the 
fundamental frequency estimates of each source to each 
pitch track provided by the score.   We calculate the 
number of time frames in which the fundamental 
frequency is at most half a semitone, or within roughly 
±3%, from the frequency associated with the pitch in the 
score.  For each source estimate established in stage one of 
ASE, we store the pitch track from the score that has the 
most time frames in common with the source’s 
fundamental frequency estimate.  We take care to ensure 
that each source is associated with a different voice in the 
score by giving priority to sources that have higher 
similarity ratings to a pitch track in the score. Using this 
simple method, the system correctly associated 99% of the 
score voices with source estimates on our testing corpus.   

5.2 Refinement of Pitch and Timing Information 
Provided by the Score 
The pitch-tracks provided by the score are useful to ASE 
in the determination of where sources are likely to have 
high amounts of energy in time-frequency space.  
However, using the score without frequency refinement 
would often cause the algorithm to miss the true 
fundamental frequencies of the sources in the mixture, 
since intonation variation and vibrato are not typically 
represented in scores. Also, even the time-aligned score 
can have errors of up to 60 ms, depending on the amount 
of expressive timing variation and asynchrony between 
performers. Without timing refinement, perceptually 
important signal features like note onsets can be lost.  

To refine the frequency of the pitch tracks provided 
by the score, we again turn to the sources’ fundamental 
frequency estimates calculated in stage two of ASE.  Since 
we have determined which pitch track is most similar to 

each source’s fundamental frequency estimate, we simply 
use the fundamental frequency estimate provided by ASE 
in all time frames in which it is within half a semitone of 
the pitch track frequency from the score.  

To refine the timing information, we calculate the 
amplitude envelopes of the sources from the stage one 
estimates, set an amplitude threshold to determine when 
the source is active, and record all frames that transition 
from below to above the threshold as possible note onsets.  
We then allow the note onsets provided by the score to be 
altered to the possible onsets calculated above if the 
estimated onsets are within 3 time frames of the onset in 
the score.  Again, we chose 3 frames because the 
difference between the centers of consecutive time 
windows is 23 ms and the score alignment had a maximal 
error of roughly 60 ms on this corpus. 

6. Experimental Results 
In previous work we tested the efficacy of the ASE source 
separation algorithm in isolation [13]. In this work, we 
were interested in measuring the possible improvement of 
source separation when score information is available.  To 
this end, we created a corpus of 100 stereo mixtures of 
four-part Bach chorales and tested our source separation 
under four conditions: blind (no score), an un-aligned 
initial score, a machine-aligned score and ideal score. This 
section describes the result in detail. 

6.1 Corpus of Scores and Audio Mixtures 
Our test corpus consisted of 100 typical Bach soprano-
alto-tenor-bass four-part chorale harmonizations. For each 
harmonization, we randomly chose a four second 
segment, typically equating to about one or two measures 
in the music.  For each segment of the harmonization 
chosen, we created three MIDI versions. The first version 
was an unaltered representation of the selected segment of 
the harmonization.  We call this the original score. 

 From each original score, we created the second MIDI 
version by randomly altering the tempo of each piece 
between 71% and 140% of the original tempo, with the 
average deviation being roughly 20%.  This version, the 
ideal score, was used to generate the audio mixture.  
Although a typical interpretive performance of a piece of 
music would likely include tempo variation throughout 
the duration of the piece, our scored segments were only a 
measure or two long, so we felt that a simple tempo 
scaling was a reasonable simulation of a performance of 
the harmonization segment.  

For each notated instrument part in the ideal score we 
created an audio file using recorded samples of violin 
(soprano and alto part), viola (tenor) and cello (bass). The 
samples used were from a commercial instrument sample 
library, Xsample Professional Sound Libraries, Volume 
41: Solo Strings.  These individual audio recordings (one 
for each instrument part in the score) were then combined 
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to create a stereo audio mixture of each chorale 
harmonization.  We created mixtures in this way in order 
to measure the difference between the ideal (the pre-mix 
individual signals) and the source estimates extracted 
from each mixture.   

We then performed score following on each audio 
mixture, aligning the original score to the mixture. The 
output of the score follower was a MIDI file that had been 
time-altered to match the timing of the audio mixture. 
This is the aligned score. 

6.2 The Experiment 
For each audio mixture we performed source separation 
four times: once with no score (the standard ASE 
algorithm), once with the ideal score, once with the 
aligned score, and once with the original score. For this 
experiment, we used a window length of 186 ms and a 163 
ms overlap between time frames in the time-frequency 
analysis of the mixture.  

Since we were interested in testing the system 
improvement when incorporating score knowledge, we 
must note that one key aspect of the separation algorithm 
was not tested in the presented data.  During the first stage, 
ASE uses the approach presented in [14] to determine each 
source’s mixing parameters (aj,δj). Since the experiment in 
this paper was designed to measure how score knowledge 
improves the second stage of demixing (separation of 
overlapped harmonics), we wanted all variation in results 
to be due to the use of score information and used known 
values for the mixing parameters. 

6.3 The Error Measure 
The performance of the algorithm was measured by its 
ability to achieve complete isolation of the individual 
sources.  For each source estimate created from the 
mixture, we calculate the Signal-to-Distortion Ratio (SDR) 
as shown in Equation 5 [3]. Here, s  is the original source 
signal, and ŝ  is the source estimate provided by the 
algorithm.  
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A high SDR represents a strong correlation between the 
estimated and original signal, with little noticeable 
distortion.  Through informal listening tests, we feel that 
an SDR under 3 or 4 dB results from estimated signals that 
are similar to the original sources, but with very noticeable 
interference or artifacts due to demixing errors.  Signals 
with an SDR above 6 dB are better and can be sufficient 
for many remixing applications.  Signals with an SDR 
above 8 or 9 dB may still contain audible artifacts when 
isolated, but these artifacts are easily masked when 
recombined with other instruments from the original 
recording.  

6.4 Results 
We found that using knowledge of the score greatly 
improved the performance of the source separation 
algorithm. Without score knowledge, the fundamental 
frequency estimation in stage 2 of ASE was accurate 
(within half a semitone) in an average of 69.4% of a 
source signal’s time frames.  Using the aligned and refined 
scores increased this accuracy to 92.9%.  The increased 
accuracy of the fundamental frequency estimates resulted 
in improved separation performance in 78.25% of the 
separated signals.  The SDR improvement between the 
median blind and median aligned score performance was 
1.7 dB.   

Figure 2 shows notched box-plots of the SDR over all 
trials for the three score knowledge scenarios. Each box 
represents the performance on 400 signals, four for each 
chorale harmonization. The lower and upper lines of each 
box show 25th and 75th percentiles of the sample. The line 
in the middle of each box is the sample median. The lines 
extending above and below the box show the extent of the 
rest of the sample, excluding outliers. Outliers are defined 
as points further from the sample median than 1.5 times 
the interquartile range (the overall height of the box) and 
are indicated by plus signs. The notches in each box show 
the 95% confidence interval around the median. Since the 
notches in the box-plot for the blind case and the aligned 
score do not overlap, we conclude, with 95% confidence, 
that use of the aligned score provides significant 
performance improvement.  

While knowledge of the score can improve the 
algorithm’s performance, a misaligned score can actually 
degrade separation.  In comparing the blind algorithm 
performance to the performance with the original score 
(the non-aligned score), the median SDR decreased by 
3.51 dB with 79.25% of the cases performing worse when 
the algorithm had knowledge of the misaligned score.  
This result emphasizes the necessity of score alignment if 
one is to incorporate score knowledge into a signal 
separation algorithm. 

 
Figure 2: Performance results over all mixtures, compared 
between score knowledge conditions. 
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Direct comparisons between this system and other 
musical separation or remixing systems are difficult 
because of the lack of commonality between source signal 
assumptions, mixture assumptions, and testing data.  
Considering the variety of approaches to the problem, the 
most suitable algorithm for a given mixture depends 
primarily on how well suited the algorithm’s assumptions 
and required a priori knowledge are to the given source 
signals and mixing process. 

6.5 Example Remixes 
To illustrate the effectiveness of the combined algorithm 
for score-informed source, we created a number of 
example remixes that are accessible here: 

http://bryanpardo.com/papers/ismir2006 
We have included examples of amplification and 

attenuation of individual instruments in the mixture, and 
also some in which we have applied reverberation and 
other effects processing to individual instruments.  A final 
example mimics a complete reworking of a piece of music 
by applying editing, looping and effects to the individual 
instrument parts.  

We also provide audio examples of isolated source 
estimates.  One of the benefits of using source separation 
for musical remixing is that although isolated source 
estimates may contain audible artifacts or interference, 
these distortions are due to other sources in the recording 
and are often masked when the signal is recombined into a 
remix.  Effective manipulation of level and instrument 
timbre is possible even at relatively low SDR levels.  To 
illustrate this, we provide examples of remixes using 
source estimates at various SDR levels.  

7. Conclusions and Future Work 
Musicians, recording engineers and composers often desire 
remixing of fully notated musical pieces.  We have 
presented a method combining score alignment and source 
separation to achieve such a task for anechoic, stereo 
recordings.  We have discussed the implementation of a 
musical source separation algorithm incorporating score 
knowledge and found this yields a notable improvement in 
separation performance. 

Our results make it clear that the fundamental 
frequency stage of the ASE algorithm can be inaccurate.  
In future work, we plan to explore more robust methods of 
fundamental frequency estimation, which our results show 
will improve overall performance. 

The approach of the ASE method is to first create 
initial signal estimates, which can be analyzed to assist 
with demixing more difficult mixture regions.  Our future 
work will examine more sophisticated analysis methods 
and signal modelling to leverage learned structural 
information concerning the sources in conjunction with 
spatial information present in stereo recordings.  We feel 
that the development of an effective separation algorithm 

requires the exploitation of simultaneous signal features, 
and the ability to assess the reliability of these features at a 
given time.  Relying heavily on cross-channel amplitude 
and timing differences is unrealistic in reverberant or 
studio-produced recordings. We believe, however, that 
additional source characteristics can be learned from 
corrupted or mixed signals, which will allow systems such 
as ASE to degrade more gracefully as the recording 
process or environment becomes more challenging. 
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