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ABSTRACT 
Potential users of audio production software, such as audio 
equalizers, may be discouraged by the complexity of the interface 
and a lack of clear affordances in typical interfaces. In this work, 
we create a personalized on-screen slider that lets the user 
manipulate the audio with an equalizer in terms of a descriptive 
term (e.g. “warm”). The system learns mappings by presenting a 
sequence of sounds to the user and correlating the gain in each 
frequency band with the user’s preference rating. This method is 
extended and improved on by incorporating knowledge from a 
database of prior concepts taught to the system by prior users. 
This is done with a combination of active learning and simple 
transfer learning. Results on a study of 35 participants show 
personalized audio manipulation tool can be built with 10 times 
fewer interactions than is possible with the baseline approach.  

Categories and Subject Descriptors 
H.5.5 [Sound and Music Computing]: Signal analysis, synthesis, 
and processing  

General Terms 
Algorithms, Human Factors. 

Keywords 
Active Learning, Transfer Learning, Interface, Equalizer, Audio, 
Music. 

1. INTRODUCTION 
We seek to simplify interfaces in software for media production 
and align them with the user’s conceptual model. In this work, we 
focus on quickly and automatically personalizing the interface of 
an audio production tool (the equalizer). Equalizers affect the 
timbre of a sound by boosting or cutting the amplitude in 
restricted regions of the frequency spectrum. They are widely 
used for mixing and mastering audio recordings.  
Many equalizers have complex interfaces that lack clear 
affordances and are daunting to inexperienced users. This is 
because controls typically reflect either the design of preexisting 
analog tools or the parameters of the algorithm used to manipulate 

the sound, rather than how sound is perceived. Figure 1 shows the 
interface to a typical parametric equalizer plugin. It has 20 knobs, 
9 push buttons and 18 radio buttons. The relationship between this 
interface and analog hardware is clear. The relationship between 
this interface and an acoustic musician’s conceptual goal (e.g. “I 
want to make the sound more ‘bright’”) is not. 

 
Figure 1.A parametric audio equalizer. 

Typically, musicians who lack the technical knowledge to achieve 
a desired acoustic effect hire a professional recording engineer 
and verbally describe the effect. This process can be expensive, 
since it requires paying a human expert by the hour. It is also 
limited by the musician’s ability to convey their meaning with 
language and the engineer’s ability to translate that language into 
parametric changes.  The well-known audio engineer John Burton 
describes the problem as follows [1]: 

‘[It is] a problem that has arisen in studios ever since the 
beginning of the recording age: how can you best describe a 
sound when you have no technical vocabulary to do so? It’s a 
situation all engineers have been in, where a musician is 
frustratedly trying to explain to you the sound he or she is after, 
but lacking your ability to describe it in terms that relate to 
technology, can only abstract. I have been asked to make things 
more “pinky blue”, “Castrol GTX’y” and … “buttery”.’ 

We therefore, favor a new alternative that lets the artist directly 
control the device in terms of the desired perceptual effect. For 
example, the tool would learn what “buttery” means to the artist, 
and then create a slider to let her make the recording more or less 
“buttery,” bypassing the bottleneck of technical knowledge.  This 
approach has been adopted in work to dynamically individualize 
the mappings between human language descriptors and 
parameters for equalization and reverberation [2]. It has been 
commercialized in the equalization plug-in iQ [3], which has been 
positively reviewed in the audio engineering press [1]. This 
indicates this approach to building a controller (Section 3) is a 
useful paradigm that complements existing tools. 
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While this approach has been successful in creating a new 
interface paradigm, the current method [2] requires a relatively 
large number of user ratings (on the order of 25) to achieve high-
quality results. This may discourage users. In this work we 
improve on that approach by guiding the learning with selective 
information requests (active learning), informed by previously 
learned concepts (transfer learning). This lets us create a useful 
personalized tool using only two or three user ratings. 

2. BACKGROUND AND RELATED WORK 
In audiology, there has been prior work on learning a listener’s 
preference to setting the equalization curve of a small number of 
frequency bands in a hearing aid [4, 5] or cochlear implant [6]. 
The most common interaction procedure for doing this is known 
as the modified simplex procedure [7] but it is slow and is not 
informed by prior user data.  

In audio engineering work applied to equalization, there has been 
work directly mapping equalizer parameters to commonly used 
descriptive words using a fixed mapping [8, 9]. A problem with 
these approaches is that mappings are extremely time-consuming 
to develop, the former requires a painstaking training process for 
each user, and the latter is brittle with respect to the variability 
that exists across users. Our work addresses both these issues. 
A recent movement in HCI has sought to integrate algorithmic 
advances from the machine learning community [10]. For 
example, Simon et al. make use of machine learning techniques to 
automatically add chords to a user-provided melody [11].   

The most closely related work to ours in domains outside of audio 
production tools is the CueFlik system [12], which correlates 
natural-language concepts to technical parameters. There is an 
important distinction between learning natural-language concepts 
in order to select existing objects (e.g., the CueFlik approach) 
versus learning concepts in order to manipulate the degree to 
which an object conforms to a given concept. Our work changes 
the artifact itself, based on an understanding of the user concept.  

In terms of artistic creation for music, one stream of work uses 
new interaction techniques, often serving as new musical 
instruments or audio control surfaces [13]. Our work is related, 
but the use of transfer and active learning to use prior learned 
concepts is distinct. The Wekinator [14] is a music performance 
control mapping tool that lets informed users interactively control 
machine learning algorithms of their choice by choosing inputs, 
features, learning algorithm and parameters, and creating training 
example feature/parameter pairs. This work is complementary to 
ours, since it is for technically knowledgeable users, does not use 
language as a paradigm, and does not use active learning.  

We use transfer learning [18, 19] when we use prior data to 
inform learning a new equalization concept.  Our approach is akin 
to collaborative filtering techniques [24] since correlation to prior 
user responses guides selection of data to use. It is distinct in that 
we do not merely filter a database of existing objects, but rather 
create a new personalized tool.    

 Active Learning [15-17] refers to  case where the machine selects 
the examples to learn from, rather than passively receiving 
examples chosen by the teacher. While we apply active and 
transfer learning to a new problem, we do not claim algorithmic 
advances in active learning, transfer learning or collaborative 
filtering. Therefore, the references are foundational and address 
the approaches we use in this work, rather than a review of the 
cutting edge in these areas.  

Transfer learning and active learning have both been applied to 
user interfaces outside the audio domain. Previous approaches 
range from customizing user interface layout for a given 
environment to interactively personalizing results in content 
discovery or search and retrieval [20-22]. 

The only work [23] we are aware of that applies transfer learning 
of audio concepts to create an audio production tool is our own 
preliminary work. There, we used an approach that can only apply 
transfer learning in the limited subset of cases where prior user-
concepts share a label with the current concept. We also did not 
use active learning. In the current work, we extend transfer 
learning to cases where prior concepts do not share a label with 
the new concept. We also apply active learning for query 
selection. We also present experimental results showing user 
ratings of learned controller effectiveness. The sum of all this is a 
significant advance over [23]. 

3. THE BASELINE SYSTEM 
Before continuing with the focus of this paper: speeding the 
creation of a personalized controller by applying transfer learning 
and active learning, we outline the baseline controller learning 
method [1]. Since space is limited and details of the baseline 
learner are not the focus, we give an overview of the process here. 
We refer the reader to the prior work for more detail.  

 
Figure 2. A learned controller for "tinny" 

1. The user selects an audio file and a descriptor (e.g. “warm” 
or “tinny”). 

2. We process the audio file once with each of N 40-band probe 
equalization curves, making N examples.  

3. The user rates how well each example sound exemplifies the 
descriptor. 

4. We then build a model of the descriptor, estimating the effect 
of each frequency band on user response. This is done by 
correlating user ratings with the variation in gain of each 
band over the set of examples. The slope of the resulting 
regression line for each frequency band indicates the relative 
boost or cut for that frequency. 

5. The system presents to the user a personalized controller 
(Figure 2) that controls filtering of the audio based on the 
learned model of how to manipulate audio.  

While the use-case presented here is equalization, this basic 
approach has been used to build personalized equalizers, 
compressors and reverberators. All these cases requires rating 
roughly 25 to 30 examples to generate a good controller [2].  

Although 25 interactions may often be acceptable, many may not 
have the patience for this. We will now describe how to speed 
learning through application of knowledge from a database 
learned from prior users. This will allow learning a good 
controller from just two or three user-rated audio examples.  
While we apply it to equalization here, the approach is not 
specific to equalization and applies to all of the domains where 
this controller personalization approach has been used. 



4. APPLYING TRANSFER LEARNING 
Define a user-concept as a concept (in this work, concepts are 
sound adjectives) taught to the machine by a particular user (i.e. 
Bob’s concept for “warm” sound). If two users teach the system 
the same word, then there are two user-concepts (Bob’s “warm” 
and Tolga’s “warm”). In the case of equalization, this results in 
two equalization curves. Figure 3 shows learned equalization 
curves for three user-concepts.  

 
Figure 3. Three learned equalization curves for user-concepts. 
While each user is unique, user-concepts may be related, even 
when they do not share a label. Figure 3 shows the equalization 
curve for User 2’s “Bright” is more similar to User 1’s “Tinny” 
than it is to User 1’s “Bright.”  If a prior user-concept is similar to 
the current user-concept, then user responses to training examples 
for this prior concept may help in learning the current user-
concept, even if the two do not share a label.  

To determine which prior data is most informative, we measure 
similarity of user responses to the training examples in the course 
of teaching the system user-concepts. This is akin to collaborative 
filtering techniques [24] since correlation to prior user responses 
guides selection of data to use. It is distinct since we do not 
merely filter a database of existing objects. Instead we use prior 
user responses to guide creation of a new controller. 

Note that our focus is on creating a personalized controller, rather 
than on new approaches to transfer learning or collaborative 
filtering. Therefore, the method we use was chosen for clarity and 
appropriateness. Experimental results (Section 7) show it is 
effective. A comparison of different transfer learning approaches 
on this problem is outside the scope of this workshop paper. 

 
Figure 4. An audio file is manipulated with m equalization 
curves to create m examples. Each user rates all examples in 
terms of their own concept (e.g. “How ‘warm’ is this 
example). Ratings range from 1 to -1. 
We create a fixed question set by manipulating a standard audio 
file (e.g. a 5 second passage from Delibes’ Flower Duet) using a 
tool, such as an equalizer. Do this m times (on the order of 50), 
creating a set of examples M to be rated by users.  Selection of 
this set is important, but outside the scope of this work. In this 

study, we use a set of EQ curves found to be effective in a 
previous study [2] and applied them to audio with significant 
energy across the frequency spectrum (see Section 6.2).  All users 
rate the same set of examples for every user-concept. 

To do transfer learning we put an existing set of user-concepts 
into a vector space defined by user ratings. Let Q be a subset 
drawn from set M of examples rated by users. The set Q may be 
drawn randomly or with a smarter selection criterion (Section 5). 
Each user–concept’s location is determined by that user’s ratings 
of the examples in Q when training the system on the concept. 
Figure 5 shows the user-concepts from Figure 4 in a space defined 
by user ratings of examples 2 and 3 from Figure 4. 

 
Figure 5. Concepts from Figure 4 placed in a 2-d space based 
on user ratings of the 2nd and 3rd examples from Figure 4. 
When training the system on a new user-concept, rather than 
asking the user to rate the full set of M examples, we ask them to 
rate only the subset Q, placing the new user-concept in the user 
rating space. Then, we estimate the current user’s ratings for the 
remaining M-Q examples by a weighted combination of user 
responses for user-concepts learned previously. Call the set of 
existing user-concepts U.  We use these estimated ratings in the 
concept training procedure for the new user’s concept.  

4.1 Distance and Weighting 
Given a new user-concept (Maria’s “dark”), the user (Maria) rates 
the examples in the query set Q. We estimate the user’s ratings for 
the remaining M-Q examples by using a weighted combination of 
past user ratings for previous user-concepts.  

Let there be a set of prior user-concepts, for which users have 
each rated all the examples in M. Call this set U. The weight for a 
prior user-concept u should go down as the distance been u and 
the new user-concept v increases.  In a pilot study, we tried a 
variety of p-norms and found Manhattan distance (Equation 1) 
performed well. Here, ru(q) and  rv(q) are the ratings given to 
example q for user-concepts u and v.  
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shown in Equation 2. 
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We can then estimate the rating the user will give to un-rated 
example q with a weighted sum of prior user-concept ratings for 
that example (Equation 3). 
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Our default approach to transfer learning does not restrict the pool 
of prior user-concept data (set U). All prior learned data from all 
users and all concepts is employed. In our experimental results, 
this is referred to as the Pooled Transfer Learning approach. The 
intuition here is that a previous user-concept (User 1’s “tinny”) 
may be similar to the current concept (User 2’s “bright”), even if 
they have different labels (e.g. Figure 3).  A second approach, 
which we called Same-word Transfer Learning, applies transfer 
learning only to data collected from other users training the 
system on the same concept word that the current user is teaching 
the system. 

5. APPLYING ACTIVE LEARNING 
 We now address the question of which subset (i.e. Q) of the 
examples in M can best locate the current user-concept in the 
space of prior learned user-concepts. This can effectively be done 
by asking questions that best let us differentiate between prior 
user-concepts. Selecting examples that caused greatest 
disagreement is a clear way to do that. In this case, we apply a 
query-by-committee active learning method [15]. This approach 
was selected for simplicity and appropriateness. A comparison to 
other approaches is outside the scope of this workshop paper. 

For a user-concept, the system presents example manipulations of 
an audio file to be rated by the user. Given a pool of prior user-
concepts U, where all users rate the same set M of audio 
examples, one can measure the variance of responses for each 
example across all prior users. An audio manipulation with high 
variance among user responses is a promising query. The wide 
spread of responses makes it easier to distinguish which existing 
user-concepts are closest to the new concept the system is 
attempting to learn.  

Consider Figure 4. The example in the top row generated 
responses that were in broad agreement: all positive, with a low 
variance among ratings. The second row shows a set of responses 
that range from positive to negative, with a large variance.  
Asking the user to rate the example that generates disagreement 
between concepts will give much more information. Our system 
ranks the examples in M by the variance of prior user ratings. The 
query set Q is formed by selecting the top |Q| examples, as 
measured by variance of user ratings. 

6. EXPERIMENTAL DESIGN  
We have argued that our approach should let us build personalized 
relevant controllers after many fewer ratings than the baseline and 
will do so even when prior user-concepts do not share a label with 
the user-concept being learned. We now establish whether this is 
true by answering the following questions:   

1) Does the baseline system create controllers that 
manipulate the audio as desired? 

2) How much (if at all) does transfer learning speed (or 
improve) learning for our problem?  

3) Is combining active learning with transfer learning 
superior to transfer learning alone?   

4) What is the appropriate pool of prior experience to draw 
from when applying transfer learning?  

To answer these questions, we had a set of 35 users train the 
system. We now explain these experiments in detail 

6.1 Descriptive Terms 
In deployment of a system, we expect people to use a multitude of 
terms we cannot predict. However, to evaluate the effectiveness of 
transfer learning in a controlled environment we required 
participants use the same set of terms, so that we could build a 
sufficiently large pool of same-word user-concepts. 

We selected five adjectives for study participants to teach the 
system:  “muffled”, “tinny”, “broad”, “bright” and “warm”. The 
terms selected were chosen in consultation with a Ph. D. in 
Speech and Hearing Science with experience as a recording 
engineer. The words “bright”, “tinny” and “muffled” were 
selected because we felt they would map well onto the 
manipulations an equalization tool performs. We expected 
“warm” to be a border case requiring both equalization and 
reverberation to be truly captured. We included “broad” because 
we intuitively felt this word would map onto spatialization 
parameters (e.g. panning) better than to equalization.  

6.2 Stimuli 
The stimuli were always manipulations of a short (5 second) 
musical passage from Delibes’ Flower Duet at the compact disc 
standard bit depth and rate (16 bits at 44.1 kHz). The Flower Duet 
was chosen for its broad spectral coverage and ease of repeated 
listening. We used a query set of 50 equalization curves found to 
be effective in previous work [2]. The excerpt from the Flower 
Duet was manipulated once by each of the 50 curves, creating 50 
manipulated examples (the set M). The same 50 examples were 
presented in randomized order for every word concept taught to 
the machine by all study participants.   

6.3 Participants 
35 people (hereafter called users) participated in the experiment. 
Thirteen were female. Average age was 27.8 years. All reported 
normal hearing and were native English speakers. 24 users 
reported at least 2 years of experience with a musical instrument. 
10 reported 2 or more years of audio equipment experience.  

6.4 Data Collection Procedures 
Users were seated in a quiet room with a computer that controlled 
the experiment and recorded user responses. The stimuli were 
presented binaurally over headphones. Each user took part in a 
single one-hour session. Each session was grouped into five runs. 
In a run, the user was presented with a single word (e.g. bright) 
and asked to teach the system their concept for that word by rating 
a set of example audio files on how well each example embodied 
the concept. Word order was randomized for each user. 

For each run, there were 70 trials. One trial is the rating of a 
single audio example on how well it embodies the concept word. 
In each run, 50 audio examples were unique. 20 repeated prior 
examples. This resulted in 20 matched-pairs of responses to the 
same stimuli for each run. The repeats were selected randomly on 
each run. Presentation order was randomized for each run. Ratings 
were given by moving a slider that ranged from -1 (the opposite of 
the concept) to 1 (perfectly embodiment of the concept).  

At the end of a run, the system learned an equalization (EQ) 
controller (Figure 2) for the concept word (e.g. “bright”). To serve 
as a baseline, the system also learned an EQ controller from 50 
randomly-generated synthetic ratings distributed uniformly on the 
interval (-1,1).  For each word, the user was asked to rate the two 
control sliders. Rating was on a scale from -1 (learned the 
opposite concept), to 1 (learned concept perfectly). The 
presentation order of the controllers was randomized.  



We examined user consistency for each user-concept by finding 
the Pearson’s correlation coefficient between a user's first and 
second rating on the 20 examples that were presented twice during 
the run. We removed lowest 5% of user-concepts (ones with a 
consistency of less than 0.19), leaving 162 (at least somewhat) 
consistent user-concepts, out of 175.  

7. SYSTEM EVALUATION 
7.1 Users’ Ratings of Controllers 
Figure 6 shows boxplots for user satisfaction with controllers 
taught to the system, broken down by word. The red line inside 
each box indicates the median value. The text on the Y-axis was 
provided to users when evaluating controllers as a guide to 
scoring. As expected, “broad” was the least satisfactory term, 
although the median satisfaction with even this word was high 
enough to provide a useful controller.  

 
Figure 6. User satisfaction with equalization controllers 
learned for each of five words. "Random" indicates user 
satisfaction with controllers generated from random data. 
User ratings for controllers built from user responses were 
consistently better than the scores for the controller learned from 
random data (according to a pair-wise Student's t-test, p < 
0.001).The mean rating given by users for the controllers learned 
using our baseline method was 0.70 (SE=0.017), on a scale of 1 to 
-1. The mean user rating of controllers learned from random data 
was 0.12 (SE=0.043). This indicates that the baseline method 
generates controllers that users find relevant. This answers our 
first experimental question: The baseline system creates 
controllers that manipulate the audio as desired. 

7.2 Learning Method Evaluation 
For the 162 consistent user-concepts, we collected user ratings of 
the 50 unique audio examples all users rated. We could then 
simulate the effectiveness of the baseline learner (without transfer 
or active learning) by selecting each user-concept and building a 
concept model from a randomly-selected set of n rated examples.  
Using the learned concept, we predicted user responses on the 
remaining rated examples and measured the correlation between 
machine predictions and actual user ratings. 

We generate a prediction of the user’s rating of a new example by 
comparing the learned concept EQ curve to the probe EQ curve 
applied to a new example. The more similar they are, the higher 
the predicted rating of that example. Similarity is measured by 
their cross-correlation, which generates a value between -1 and 1. 
This can be compared to the user’s actual rating for the new 
example. Given a set of rated examples, M, the machine-user 
correlation is the Pearson correlation coefficient of user ratings to 
machine-generated ratings for the entire set of rated examples.  

For a given value of n (number of rated examples) this gave 162 
machine-correlation values (one per user-concept). We did this for 
each value of n from 1 (a single rated example) to 50 (all the rated 
examples for that user-concept), calculating the mean machine-
user correlation across the 162 user-concepts. This formed our 
baseline learning method.  
We then repeated this process for each learning method. Pooled 
transfer learning utilized data from n randomly selected ratings 
by the user, augmented by all of the example ratings from the 161 
other learned user-concepts. The data from the remaining 
concepts was weighted using the n-dimensional Manhattan 
distance measure described earlier, where n is the number of rated 
examples for the current concept. Same-word Transfer learning 
was the same as Pooled transfer learning, except only those user-
concepts with the same word descriptor were used.   

Pooled Transfer + Active learning was identical to Pooled 
Transfer learning, except that the n examples were not randomly 
selected. Instead the n with the greatest variance in user responses 
across the other 161 user-concepts were used. Same-word 
Transfer + Active learning was identical to Pooled Active + 
Transfer learning, except that the pool was restricted to user-
concepts with the same word label. 

 
Figure 7 Mean machine-user correlation for each learning 
method, averaged over all words. The relative performance of 
these methods remained identical for each of the five 
descriptive words taught to the system.   
Figure 7 shows the learning curve for all these methods. As the 
figure shows, all methods that use transfer learning outperform the 
baseline method. Same-word learning outperforms Pooled for one 
or two examples. Once three examples are rated, the performance 
of both methods are indistinguishable. For both Pooled and Same-
word learning, active selection of training examples shows a 
noticeable effect. The effect of active learning is significantly 
stronger for Pooled transfer learning. These results were 
consistent for each of the five words used in training. Space limits 
preclude showing the individual-word data. 

This answers experimental question 2: learning user concepts with 
transfer learning is much more effective than learning user 
concepts using no prior knowledge. It also answers question 3: 
active selection of training examples significantly improves 
transfer learning of concepts in this domain. 
These results were confirmed by an analysis of covariance. A 
pair-wise comparison of all learning methods revealed the 
observed differences between learning methods were statistically 

Learned opposite concept 1
0.8
0.6
0.4
0.2

Did not learn concept 0
0.2
0.4
0.6
0.8

Learned concept perfectly 1

broad bright muffled warm tinny random

1 2 3 4 5 6 7 8 910 20 30 40 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

number of rated examples

m
ac

hi
ne

 u
se

r
co

rre
la

tio
n

Performance of Learning Methods

 

 

Same word Transfer+Active
Same word Transfer
Pooled Transfer+Active
Pooled Transfer
Baseline



significant (by Tukey's HSD p < 0.001). Learning methods were 
ordered, from best to worst as follows: Pooled Transfer+Active, 
Pooled Transfer, Same-word Transfer+Active, Same-word 
Transfer, and Baseline learning.  

The final experimental question is “What is the appropriate pool 
of prior experience to draw from when applying transfer 
learning?” Figure 7 indicates that, if a prior user has already 
taught the system the word currently being learned, same-word 
transfer learning is the best choice. That said, if the user can 
answer three or more questions, pooled transfer learning with 
active learning does as well or better.  Pooled transfer learning has 
the added benefit that it does not require any user-concept in the 
database share a label with the current concept. 

8. CONCLUSIONS 
Using a simple approach, we have demonstrated significant 
improvements in the number of user-ratings needed adequately 
learn a desired equalization controller from user feedback. A 
previous method required roughly 25 user-rated examples to yield 
an effective controller. Through transfer learning and active 
learning, we can reduce this to between one and three ratings.  

This work promises to enable useful on-the-fly tool building in the 
recording studio or for home-studio use (e.g. Apple’s Garage 
Band) A user unfamiliar with existing equalizer (or reveberator, or 
compressor) interfaces could quickly (after answering just two or 
three questions) create tools to manipulate audio within the terms 
defined by the user.  Another interesting application area is to let 
hearing-aid users adjust their hearing aids in the field.   

9. ACKNOWLEDGMENTS 
This work was funded by USA National Science Foundation 
Grant 0757544.  

10. REFERENCES 
[1] Burton, J.,  "Ear Machine iQ: Intelligent Equaliser Plug-in 

for MacOS & Windows," Sound on Sound Magazine, 2011, 
Sound on Sound Ltd.: United Kingdon. 

[2] Sabin, A., Rafii, Z. and B. Pardo, “Weighting function-
based rapid mapping of descriptors to audio processing 
parameters,” Journal of the Audio Engineering Society, 2011, 
vol. 59(6): p. 419-430 

[3] Ear Machine's iQ equalization plugin. Available from: 
http://www.ear-machine.com/iQ.html. 

[4] Neuman, A.C., et al. , "An evaluation of three adaptive 
hearing aid selection strategies," Journal of the Acoustical 
Society of America, 1987. 82(6): p. 1967-1976. 

[5] Durant, E.A., et al., "Efficient Perceptual Tuning of Hearing 
Aids with Genetic Algorithms," IEEE  Transactions on 
Speech and Audio Processing, 2004. 12(2): p. 144-155. 

[6] Wakefield, G.H., et al., "Genetic Algorithms for Adaptive 
Psychophysical Procedures: Recipient-Directed Design of 
Speech-Processor MAPs," Ear Hear, 2005. 26 (4 Suppl.): p. 
57S–72S  

[7] Kuk, F.K. and N.M. Pape, "The reliability of a modified 
simplex procedure in hearing aid frequency-response 
selection,"  Journal of  Speech and Hearing Research,1992. 
35(2): p. 418-429. 

[8] Mecklenburg, S. and J. Loviscach, "subjEQt: Controlling an 
equalizer through subjective terms," Extended Abstracts of 
the Proc. of ACM CHI 2006. NY: ACM Press. : Montreal, 
Canada. p. 1109-1114. 

[9] Reed, D., "Capturing perceptual expertise: a sound 
equalization expert system," Knowledge-Based Systems, 
2001. 14: p. 111-118. 

[10] Morris, D. and J. Secretan, "Computational creativity 
support: Using algorithms and machine learning to help 
people be more creative," Ext.Abs. of the Proc. of ACM CHI 
2009, Boston, USA. p. 4733-4736. 

[11] Simon, I., Morris, D., and Basu, S. , "MySong: Automatic 
accompaniment generation for vocal melodies," Proceedings 
of ACM CHI 2008,  Florence, Italy. p. 725-734. 

[12] Fogarty, K., Tan, D., Kapoor, A., and Winder, S. , "CueFlik: 
Interactive Concept Learning in Image Search,"  Proc. of 
ACM CHI 2008,  Florence, Italy. p. 29-38. 

[13] Fiebrink, R., D. Morris, and M.R. Morris. "Dynamic 
mapping of physical controls for tabletop groupware," 
Proceedings of ACM CHI 2009. Boston, MA. 

[14] Fiebrink, R., D. Trueman, and P.R. Cook, "A meta-
instrument for interactive, on-the-fly machine learning," 
Proceedings of New Interfaces for Musical Expression 
(NIME) 2009, Pittsburgh, PA. 

[15] Cohn, D., Atlas, L., and Ladner, R. , "Improving 
Generalization with Active Learning," Machine Learning, 
1994  15: p. 201-221. 

[16] Settles, B.,  Active Learning, Synthesis Lectures on Artificial 
Intelligence and Machine Learning , Morgan & Claypool, 
2011. ISBN:	  9781608457250 

[17] Bloodgood, M.a.C.-B., C. Bucking the Trend: Large-Scale 
Cost-Focused Active Learning for Statistical Machine 
Translation. . in Proc. of the Association for Computational 
Linguistics(ACL 2010). Uppsala, Sweden 

[18] Pan, S.a.Y., Q. , "A Survey on Transfer Learning," IEEE  
Transactions on Knowledge and Data Engineering, 2010. 
22(10): p. 1345-1359. 

[19] Ando, R. and T. Zhang, "A Framework for Learning 
Predictive Structures from Multiple Tasks and Unlabeled 
Data," Journal of Machine Learning Research, 2005. 
6(Nov):p. 1817-1853 

[20] Gajos, K.a.W., D.S.  , SUPPLE: Automatically Generating 
User Interfaces. , Proc. of Intelligent User Interfaces (IUI 
2004),  2004, Funchal, Portugal. p. 93-100. 

[21] Lin, J. and J.A. Landay, Damask, "A Tool for Early-stage 
Design and Prototyping of Multi-device User Interfaces," 
Proc. of the 8th International Workshop on Visual 
Computing, 2002. p. 573-580. 

[22] Nichols, J., Myers, B.A., Higgins, M., Hughes, J., Harris, 
T.K., Rosenfeld, R.,  and M. Pignol, "Generating remote 
control interfaces for complex appliances," UIST '02 - 
Proceedings of the 15th annual ACM Symposium on User 
Interface Software and Technology, 2002, Paris, France. p. 
161-170. 

[23] Pardo, B., Little, D. and D. Gergle, “Towards Speeding 
Audio EQ Interface Building with Transfer Learning,” 
Proceedings of New Interfaces for Musical Expression 
(NIME) 2012,  Ann Arbor, MI, USA, May 21-23, 2012 

[24] Su, X. and T.M. Khoshgoftaar, "A Survey of Collaborative 
Filtering Techniques," Advances in Artificial Intelligence, 
2009. Volume 2009 (2009) 


